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Aging effects in the quantum dynamics of a dissipative free particle: Non-Ohmic case
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We report the results related to the two-time dynamics of the coordinate of a quantum free particle, damped
through its interaction with a fractal thermal bath~non-Ohmic coupling;vd with 0,d ,1 or 1,d ,2).
When the particle is localized, its position does not age. When it undergoes anomalous diffusion, only its
displacement may be defined. It is shown to be an aging variable. The finite temperature aging regime is
self-similar. It is described by a scaling function of the ratiotw /t of the waiting time to the observation time,
as characterized by an exponent directly linked tod.
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In a broad range of out-of-equilibrium systems, the d
namics displays aging effects. For instance, the two-time
relation functions of some out-of-equilibrium dynamic va
ables may not be invariant by time translation, even in
limit of a large waiting time ~or age!. The fluctuation-
dissipation theorem~FDT!, which is valid for dynamic vari-
ables at equilibrium, is then not verified. The study of ag
effects and of the related violation of the FDT is a fund
mental problem of the physics of dissipative out-o
equilibrium systems. In order to discuss these question
any temperatureT, one has to work within a quantum frame
work, the time scale\/kT playing a crucial role in the low-
temperature dynamics. Since aging effects are encounte
not only in complex systems such as spin glasses@1#, but
also in simpler systems neither disordered nor frustrated@2#,
it is very natural, to begin with, to carry out the study
quantum aging in this latter type of system.

One archetype of a simple quantum dissipative sys
displaying aging is a particle coupled to a thermal bath
otherwise free. Aging effects on the displacement correla
function and the corresponding violation of the quantu
FDT have recently been discussed@3# for a specific model of
dissipation, namely, the so-called Ohmic model. T
fluctuation-dissipation ratio allowing us to write a modifie
FDT at finite temperature admits in this case a nontriv
limit value 1/2. Yet the Ohmic model, which corresponds
a particle undergoing standard quantum Brownian mot
@4,5#, does not allow us to handle all the dissipative situ
tions of interest.

In this paper we extend the study of the two-time dyna
ics to the situations in which the particle damped motion
described by a truly retarded equation even in the class
limit and in which either localization or anomalous diffusio
phenomena are taking place. Such situations are encoun
in various problems of condensed matter physics@6#. We use
for the dissipation a versatile model able to generate var
damped equations of motion, either instantaneous or reta
in the classical limit. The dissipation is introduced via a li
ear coupling of the particle to a set of harmonic oscillators
thermal equilibrium, this bath having a continuous distrib
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tion of modes of bandwidthvc ~Caldeira and Leggett mode
@7,8#!. A central ingredient is the product of the bath dens
of modes times the squared coupling constantul(v)u2, a
product assumed to vary asvd at frequenciesv!vc . In the
Ohmic model the dissipative exponentd is equal to 1. The
algebraic cases 0,d ,1 andd.1 are known, respectively
as the sub-Ohmic or super-Ohmic models@6,9–11#.

Studying a dissipative free particle, one is faced with tw
dynamical variables, namely, the particle velocity and
particle coordinate, which are of a very different character
far as equilibration properties~and therefore aging! are con-
cerned. In the following we first show that for 0,d ,2 the
velocity equilibrates at large times and does not age. Th
turning to the study of the coordinate, we discuss the dom
of (d,T) parameters for which aging is taking place. Th
question is nontrivial. Indeed the two following propertie
have been demonstrated@6,9–11#. First, at T50 for 0,d
,1, the particle is localized, in the sense that the me
square displacementDx2(t)5^@x(t)2x(0)#2& tends towards
a constant at infinite time. Second, atT50 for 1<d ,2, and
also at finiteT for 0,d ,2, Dx2(t) diverges at infinite time,
the diffusion being anomalous except at finiteT for d51. As
for the two-time dynamics, which is the subject of th
present paper, we find clear-cut behaviors: as far as the
ordinate is concerned, the localized particle does not a
while the diffusing one ages. In this latter case we prov
analytic expressions for the effective temperature and
fluctuation-dissipation ratio. We show in particular that t
finite temperature aging regime is self-similar.

In the Caldeira and Leggett model, the Hamiltonian of t
particle-plus-bath system reads, in obvious notations,

H5
p2

2m
2x(

n
ln~bn1bn

†!1(
n

\vnbn
†bn1x2(

n

ln
2

\vn
,

~1!

whereln is a real coupling constant. Forv.0, the quantity

2pg(v)ul(v)u25
1
2

m\vK(v) is modeled as

K~v!52gS v

g D d21

f cS v

vc
D , ~2!
©2002 The American Physical Society07-1



n
e

is

o

m
d

o
e

i-
or
a
es
n

en

se
es
th

ith

e
r-

te

l

po-

y

on
nt
is

le
the

ce-

f
ent

b-
he

ent
hout
ac-
ent

it
has

he
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where g is a coupling frequency andf c a high-frequency
cutoff function of typical widthvc . The definition ofK(v)
is then extended tov,0 by imposing that it must be an eve
function of v. The particle position operator obeys the r
tarded equation of motion

ẍ~ t !1E
t i

t

dt8k~ t2t8!ẋ~ t8!52x~ t i !k~ t2t i !1
1

m
F~ t !,

~3!

where t i denotes the initial time at which the coupling
switched on. In Eq.~3!, the inverse Fourier transformk(t) of
K(v) plays the role of a memory kernel, andF(t) is a linear
combination of bath operators, acting as a stationary rand
force of correlation function

CFF~ t !5mE
2`

` dv

2p
ReK̃~v!\v coth

b\v

2
e2 ivt, ~4!

with ReK̃(v)5 1
2 K(v) and b5(kBT)21. As for ImK̃(v),

with the modelization~2! for K(v) and a Lorentzian cutoff
function f c5vc

2/(vc
21v2), one has:

ImK̃~v!5vS uvu
g D d22

f cS v

vc
D

3F cot
dp

2
1S vc

uvu D
d22 1

sin
dp

2
G . ~5!

Let us first consider the particle velocity. It has been de
onstrated that, for 0,d ,2, the total mass of the particle an
of the bath oscillators diverges, while ford .2 it remains
finite and can be considered as a renormalized mass. F
,d ,2 (dÞ1), the nonequilibrium expected value of th
particle velocity relaxes towards zero at larget2t i like
(t2t i)

d22. For d51, the relaxation is exponential. The in
tial expected value of the velocity being forgotten f
0,d ,2, this situation may in this sense be qualified
ergodic. Ford .2, the dynamics is governed at large tim
by a kinematical term involving the renormalized mass, a
the initial expected value of the velocity is never forgott
@6,9–11#.

In the following, we limit ourselves to the ergodic ca
0,d ,2. Then the velocity equilibrates at large tim
and does not age. This property, already obtained in
Ohmic case@3#, thus generalizes to non-Ohmic models w
0,d ,2. The two-time velocity correlation function
Cvv(t,t8) only depends on the time difference and will b
denoted asCvv(t2t8). It can be computed via the Wiene
Khintchine theorem as the Fourier transform of

Cvv~v!5
1

m

ReK̃~v!

uK̃~v!2 ivu2
\v coth

b\v

2
. ~6!

Let us now turn to the study of the particle coordina
One may attempt to define its spectral density asCxx(v)
5Cvv(v)/v2. If convergent, the integra
05610
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*2`
` (dv/2p)Cxx(v) representŝx2(t)&, a quantity that must

be independent oft. Checking the small-v behavior of the
integrand with the chosen modelization forK̃(v), one sees
that this is only possible atT50 for 0,d ,1. In this case,
the particle is localized and it makes sense to define its
sition in an absolute way asx(t)5*2`

t dt8v(t8). The two-
time position correlation function

Cxx~ t,t8!5
1

2
^$x~ t !,x~ t8!%1&, ~7!

where the symbol$•,•%1 stands for the anticommutator, onl
depends ont5t2t8 ~observation time!: it does not age.

In other cases, that is, atT50 for 1<d ,2 and at finiteT
for 0,d ,2, the integral *2`

` (dv/2p)Cxx(v) diverges.
Then^x2(t)& andCxx(t,t8) as defined by Eq.~7! are infinite.
The particle diffuses. The integrated velocity correlati
function D(t)5*0

t duCvv(u) represents the time-depende
diffusion coefficient~in an extended sense when diffusion
anomalous, that is, atT50 for 1,d ,2, and at finiteT for
0,d ,1 and 1,d ,2). In this case, it is no longer possib
to define an absolute position. We thus focus interest on
displacementx(t)2x(t0) (t>t0). This quantity does not
equilibrate with the bath, even at large times. The displa
ment correlation function

Cxx~ t,t8;t0!5
1

2
^$@x~ t !2x~ t0!#,@x~ t8!2x~ t0!#%1& ~8!

depends on botht5t2t8 and tw5t82t0 ~waiting time!: it
ages. As demonstrated in Ref.@3#, the aging properties o
Cxx(t,t8;t0) can be described in terms of the time-depend
diffusion coefficientsD(t) andD(tw).

Therefore, before describing the violation of the equili
rium FDT, we need to study in detail the behavior of t
time-dependent diffusion coefficientD(t). Note, however,
that the integrated velocity correlation function*0

t duCvv(u)
takes the meaning of a time-dependent diffusion coeffici
only when the mean-square displacement increases wit
bounds: when the particle is localized, this quantity char
terizes the relaxation of the mean square displacem
Dx2(t) towards its finite limitDx2(`). Since 0,d ,2, one
can restrict the study to the infinite bath bandwidth lim
vc→`, in which case calculations are more simple. One

D~ t !5
\

mp
gd22E

0

`

dv coth
b\v

2
sinvt

3Fvd211v32d S uvud22cot
dp

2
2gd22D 2G21

.

~9!

At finite T, it is interesting to discuss on the same footing t
classical counterpart ofD(t), namely,Dcl(t) deduced from
D(t) by replacing coth(b\v/2) by 2/b\v in Eq. ~9!. Several
important features ofD(t) and Dcl(t) can be obtained by
contour integration.
7-2
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At T50, D(t) is found to be the sum of a pole contribu
tion, which exists only for 0,d ,1, given by the oscillating
function

D~ t !pole;
\

m

1

22d
e2LtsinVt, ~10!

whereV andL are known functions ofd andg, and of a cut
contribution behaving at large times as a power law,

D~ t !cut;
\

mp
~gt !d22sin3

dp

2
G~22d!, ~11!

whereG denotes the Euler Gamma function.
At finite T, Dcl(t) is also found to be the sum of an o

cillating function, which exists only for 0,d ,1,

Dcl~ t !pole;
kT

mg

2

22d S sin
dp

2 D 1/(22d)

e2Lt sin~Vt2f!,

~12!

with f5pd/2(22d), and of a cut contribution behaving a
large times as a power law,

Dcl~ t !cut;
kT

mg
~gt !d21

sinS dp

2 D
G~d!

. ~13!

The behaviors ofD(t) andDcl(t) at several different tem
peratures are illustrated in Fig. 1 ford50.5 and in Fig. 2 for
d51.5. Interestingly enough, for any givend, the curves
corresponding to different bath temperatures do not inters
Actually, it can be shown that, at any fixed timet, D(t), like

FIG. 1. The solid lines show the quantum diffusion coefficie
D(t) plotted as a function ofgt for d50.5 and for bath tempera
tures T50, kBT5\g/2p, kBT5\g/p @at T50, D(t) is not a
diffusion coefficient, but characterizes the relaxation ofDx2(t) to-
wards its finite limit valueDx2(`)#. The dashed lines show th
correspondingDcl(t).
05610
ct.

Dcl(t), is a monotonously increasing function ofT. For times
t!t th (t th5\/2pkBT) and for any value ofd, the curves for
D(t) at finite T nearly coincide with those atT50, as it
should.

At intermediate times, and for 0,d ,1, an oscillation
due to the pole contribution takes place inD(t) @and also in
Dcl(t) but with a smaller amplitude#. For certain values ofd
andT, this oscillation may even result in negative values
D(t) during a finite time interval.

At large timest@g21,t th and for any finiteT, the curves
of D(t) andDcl(t) join together:D(t) describes a subdiffu-
sive regime when 0,d ,1, and a superdiffusive one whe
d.1. At T50, D(t) describes the relaxation ofDx2(t) to-
wardsDx2(`) for 0,d ,1, and a subdiffusive regime fo
1,d ,2.

In the classical case, a modified FDT can be written
@1,2#

xxx~ t,t8!5bQ~ t2t8!Xcl~ t,t8;t0!
]Cxx~ t,t8;t0!

]t8
, ~14!

wherexxx(t,t8) is the displacement response function. Fo
diffusing particle, the fluctuation-dissipation rati
Xcl(t,t8;t0) can be obtained fromDcl(t) andDcl(tw) @3#:

Xcl~t,tw!5
Dcl~t!

Dcl~t!1Dcl~ tw!
. ~15!

For anyt and tw , one can define an effective inverse tem
perature asbeff

cl (t,tw)5bXcl(t,tw). SinceXcl does not de-
pend onT, the bath temperature is rescaled by a factor 1/Xcl

larger than 1, due to those fluctuations of the particle d
placement, which take place during the waiting time.

t FIG. 2. The solid lines show the quantum diffusion coefficie
D(t) plotted as a function ofgt for d51.5 and for bath tempera
turesT50, kBT5\g/2p, kBT5\g/p. The dashed lines show th
correspondingDcl(t).
7-3
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large times (t,tw@g21,t th), one can use in Eq.~15! the
asymptotic expressions ofDcl(t) and Dcl(tw) as given by
Eq. ~13!. Equation~15! then displays the fact that, in a sub
Ohmic or super-Ohmic model of exponentd (0,d ,1 or
1,d ,2), a self-similar aging regime takes place at lar
times, as pictured by

Xcl,ag~t,tw!5
1

11~ tw /t!d21
. ~16!

Interestingly enough,Xcl,ag andTeff
cl,ag5(kBbeff

cl,ag)21 are func-
tions of tw /t, solely parametrized byd. They do not depend
on the other parameters of the model~i.e., g or vc). For d

FIG. 3. The solid lines show the effective inverse temperat
beff , as computed from Eq.~17!, plotted as a function ofgt for a
bath temperaturekBT5\g/2p and two different values ofd. The
dashed lines show the corresponding classical effective inverse
peraturebeff

cl,ag, as deduced from Eq.~16!.
05610
e

51, one retrieves the resultsXcl,ag51/2 andTeff
cl,ag52T @2,3#.

For any other value ofd, Xcl,ag andTeff
cl,ag are algebraic func-

tions of tw /t. The limitst →` andtw→` do not commute.
In the quantum case, the effective temperatureTeff

5(kbeff)
21 can be obtained from the following equation@3#:

DTeff
~t!5D~t!1D~ tw!. ~17!

Equation ~17! also allows us to defineTeff at T50 for
1<d ,2. SinceD(t) is a monotonously increasing functio
of T, Eq. ~17! yields for Teff(t,tw) a uniquely defined value

The curves representingbeff(t,tw) as a function oft for
d50.5 andd51.5 at a given finite temperature and for
given tw@g21,t th are plotted in Fig. 3. Quantum effects d
not persist beyond timest ;t th . Thus, for times t
@g21,t th , Xcl,ag(t,tw) @Eq. ~16!# allows for a proper de-
scription of finite temperature aging.

In summary, we have shown that the two-time dynam
of a quantum dissipative free particle displays extremely r
behaviors. In particular, one finds either a localized regime
which the position can be defined in an absolute way a
does not age (T50, 0,d ,1), or ~possibly anomalously!
diffusing ones in which it only makes sense to consider
displacement, which displays aging (T50, 1<d ,2, or T
finite, 0,d ,2). We have demonstrated that~i! the aging
regime at a finite temperature is properly described by
classical fluctuation-dissipation ratio, which fordÞ1 is a
self-similar function oftw /t, parametrized byd, ~ii ! the limit
value of the fluctuation-dissipation ratio is conditioned byd,
the limit value 1/2 being specific of the Ohmic dissipatio
(d51).

Let us add that this model, interestingper se@2#, is not
devoid of phenomenological interest. For instance, in the
main of single-charge tunneling, the phase in a junct
treated as a capacitor coupled to a dissipative environm
behaves as a sub-Ohmic dissipative free particle@6#. Our
study suggests that aging should be displayed by the ph
while the conjugate variable, i.e., the charge on the capac
should not age.
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