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Aging effects in the quantum dynamics of a dissipative free particle: Non-Ohmic case
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We report the results related to the two-time dynamics of the coordinate of a quantum free particle, damped
through its interaction with a fractal thermal baifon-Ohmic coupling~ »?® with 0<8<1 or 1< <2).
When the particle is localized, its position does not age. When it undergoes anomalous diffusion, only its
displacement may be defined. It is shown to be an aging variable. The finite temperature aging regime is
self-similar. It is described by a scaling function of the ratjd r of the waiting time to the observation time,
as characterized by an exponent directly linkedsto
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In a broad range of out-of-equilibrium systems, the dy-tion of modes of bandwidtly. (Caldeira and Leggett model
namics displays aging effects. For instance, the two-time cor-7,8]). A central ingredient is the product of the bath density
relation functions of some out-of-equilibrium dynamic vari- of modes times the squared coupling constartw)|?, a
ables may not be invariant by time translation, even in theProduct assumed to vary ag at frequenciess<w.. In the
limit of a large waiting time (or agd. The fluctuation- ©Ohmic model the dissipative exponediis equal to 1. The
dissipation theorentFDT), which is valid for dynamic vari- &/gebraic cases05<1 and4>1 are known, respectively,
ables at equilibrium, is then not verified. The study of aging®S 1€ Sub-Ohmic or super-Ohmic modg#so—11. .
effects and of the related violation of the FDT is a funda- , >tudying a dissipative free particle, one is faced with two
mental problem of the physics of dissipative out-of- dynamical variables, namely, the particle velocity and the
equilibrium systems. In order to discuss these questions article co_o.rqute, which are of a very d|ﬁerept character as
any temperaturd, one has to work within a quantum frame- r as equilibration propertieigind therefore agingare con-

K the fi 6 /KT plavi ial role in the | cerned. In the following we first show that fox05 <2 the
work, the time scalé/kT playing a crucial role in the low- ,,g|qcity equilibrates at large times and does not age. Then,

temperature dynamics. Since aging effects are encounteregning to the study of the coordinate, we discuss the domain
not only in complex systems such as spin glagd@sbut o (5 T) parameters for which aging is taking place. This
also in simpler systems neither disordered nor frustrB2¢d  question is nontrivial. Indeed the two following properties
it is very natural, to begin with, to carry out the study of have been demonstraté,9—11. First, atT=0 for 0<§
quantum aging in this latter type of system. <1, the particle is localized, in the sense that the mean

One archetype of a simple quantum dissipative systemquare displacemenix?(t) = ([ x(t) —x(0)]?) tends towards
displaying aging is a particle coupled to a thermal bath buk constant at infinite time. Second,Tat 0 for 1< 6 <2, and
otherwise free. Aging effects on the displacement correlatioralso at finiteT for 0< 8 <2, Ax?(t) diverges at infinite time,
function and the corresponding violation of the quantumthe diffusion being anomalous except at firiitéor 5=1. As
FDT have recently been discusd& for a specific model of for the two-time dynamics, which is the subject of the
dissipation, namely, the so-called Ohmic model. Thepresent paper, we find clear-cut behaviors: as far as the co-
fluctuation-dissipation ratio allowing us to write a modified ordinate is concerned, the localized particle does not age,
FDT at finite temperature admits in this case a nontrivialwhile the diffusing one ages. In this latter case we provide
limit value 1/2. Yet the Ohmic model, which corresponds toanalytic expressions for the effective temperature and the
a particle undergoing standard quantum Brownian motiorluctuation-dissipation ratio. We show in particular that the
[4,5], does not allow us to handle all the dissipative situa-finite temperature aging regime is self-similar.

tions of interest. In the Caldeira and Leggett model, the Hamiltonian of the
In this paper we extend the study of the two-time dynam Jparticle-plus-bath system reads, in obvious notations,

ics to the situations in which the particle damped motion is 2 A2

described by a truly retarded equation even in the classicalH= ~——x>, \ (b, +b))+ >, fw,blb,+x2>, —-,

limit and in which either localization or anomalous diffusion 2m v v v ho,

phenomena are taking place. Such situations are encountered @

in various problems of condensed matter phyfédsWe use  where\, is a real coupling constant. Far>0, the quantity
for the dissipation a versatile model able to generate various

1
damped equations of motion, either instantaneous or retard&iﬂg(w)|?\(w)|2=§mﬁ wK(w) is modeled as
in the classical limit. The dissipation is introduced via a lin-
ear coupling of the particle to a set of harmonic oscillators in ol
thermal equilibrium, this bath having a continuous distribu- K(w)ZZY(;) fe w—c)’ 2
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where y is a coupling frequency anél, a high-frequency [”_(dw/27)C,,(®) representéx(t)), a quantity that must
cutoff function of typical widthw.. The definition ofK(w) be independent of. Checking the smalls behavior of the
is then extended te<0 by imposing that it must be an even integrand with the chosen modelization #fw), one sees
function of w. The particle position operator obeys the re-tna; this is only possible &=0 for 0<&<1. In this case,

tarded equation of motion the particle is localized and it makes sense to define its po-
: 1 sition in an absolute way as(t)=["_dt'v(t’). The two-
;'((t)+J dt’k(t—t/)x(t") = —x(t,) k(t—t;) + EF(t)’ time position correlation function
g
) 1 ,
Cad )= 5 (XMW, X(1")}4), (7)

wheret; denotes the initial time at which the coupling is
switched on. In Eq(3), the inverse Fourier transfork{t) of .
K(w) plays the role of a memory kernel, afidt) is a linear where the symbd]-, -} .. stands for the anticommutator, only

combination of bath operators, acting as a stationary randofiePends omr=t—t’ (observation timg it does not age.
force of correlation function In other cases, that is, &at=0 for 1< 5 <2 and at finitelT

for 0<6<2, the integral [Z (dw/27)C,(w) diverges.
® - Bheo _. Then(x?(t)) andC,,(t,t") as defined by Eq7) are infinite.
S RK(w)hwcoth——e™', (4  The particle diffuses. The integrated velocity correlation
function D(t)=f5duCW(u) represents the time-dependent
; s _1 _ -1 = diffusion coefficient(in an extended sense when diffusion is
with ReK(w) =K (w) and 5=(kgT) °. As for IMK(w), anomalous, that is, a=0 for 1< <2, and at finiteT for
0< 6 <1 and K6 <2). In this case, it is no longer possible
to define an absolute position. We thus focus interest on the
displacementx(t) —x(tp) (t=ty). This quantity does not

s}

CFF(t):mf

—o0

with the modelization2) for K(w) and a Lorentzian cutoff
function f ;= w?/(w2+ »?), one has:

5-2
IMK(w)=w M) fc<i) equilibrate with the bath, even at large times. The displace-
4 @We ment correlation function
b [we\?% 1
X C0t7+ — —5 . (5) , 1 ,
] sinor Cal Lt/ sto)= S({IX(D ~X(t) LX) = X(to) 1}4) (8)

Let us first consider the particle velocity. It has been demdepends on both=t—t" andt, =t' —t, (waiting time: it

onstrated that, for & 8 <2, the total mass of the particle and 29€S- As demonstrated in R¢8], the aging properties of
of the bath oscillators diverges, while far>2 it remains  Cxx(t,t';to) can be described in terms of the time-dependent
finite and can be considered as a renormalized mass. For @ffusion coefficientsD(7) andD(ty).

<8<2 (5+1), the nonequilibrium expected value of the Therefore, before describing the violation of the equilib-
particle velocity relaxes towards zero at larget, like 'um FDT, we need to study in detail the behavior of the

(t—t,)°~2. For =1, the relaxation is exponential. The ini- time-dep_endent diffusior) coefficie@(t). Ngte, however,

tial expected value of the velocity being forgotten for that the integrated velocity correlation fungtlgﬁbglucw(u). .
0<6<2, this situation may in this sense be qualified astakes the meaning of a t|me—d_ependent dn‘f_usmn coefﬁqent
ergodic. Ford>2, the dynamics is governed at large timesONly When the mean-square displacement increases without
by a kinematical term involving the renormalized mass, andPounds: when the particle is localized, this quantity charac-

the initial expected value of the velocity is never forgottenterizZeS the relaxation of the ,mean_square displacement
[6,9-11. Ax4(t) towards its finite limitAx<(e). Since 0< 6 <2, one

In the following, we limit ourselves to the ergodic case €N res'_[rict the study to the_infinite bath bgndwidth limit
0<8<2. Then the velocity equilibrates at large times @c— % 1N which case calculations are more simple. One has
and does not age. This property, already obtained in the
Ohmic casd 3], thus generalizes to non-Ohmic models with D(t)= i)/&szdw coth'%—wsinwt
0<é6<2. The two-time velocity correlation function mar 0 2
C,,(t,t") only depends on the time difference and will be

21-1
denoted a$C,,(t—t"). It can be computed via the Wiener- | =14 3-2 5—2 577_ 5—2
Khintchine theorem as the Fourier transform of @ @ ] COt? Y '
~ 9
Co () 1 ReK(w) 5 t,Bﬁw ® ©
= — — coth——. .. S . . .
vl m IK(w)—iw|? ¢ 2 At finite T, it is interesting to discuss on the same footing the

classical counterpart dd(t), namely,D%(t) deduced from

Let us now turn to the study of the particle coordinate.D(t) by replacing cothgiw/2) by 2|37 w in Eq.(9). Several

One may attempt to define its spectral densityGas(w) important features oD (t) and D%(t) can be obtained by
=C,,(w)/w?. If convergent, the integral contour integration.
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FIG. 1. The solid lines show the quantum diffusion coefficient

D(t) plotted as a function ot for §=0.5 and for bath tempera-
tures T=0, kgT=%Ay/2m, kgT=#hy/m [at T=0, D(t) is not a
diffusion coefficient, but characterizes the relaxatiomof(t) to-
wards its finite limit valueAx?(«)]. The dashed lines show the
correspondindd®(t).

At T=0, D(t) is found to be the sum of a pole contribu-
tion, which exists only for 826 <1, given by the oscillating
function

Aol .
D(t)p0|e~ame sinQt,

(10)
where() andA are known functions 06 andvy, and of a cut
contribution behaving at large times as a power law,

h o
D(t)cur ﬁ()’t)&ZSIHSTF(Z— 0), (11
wherel' denotes the Euler Gamma function.

At finite T, D(t) is also found to be the sum of an os-
cillating function, which exists only for € 6 <1,

| kT 2 [ om\VCo
DC('f)poue-Nm—yZs sin—- e Msin(Qt—¢),
(12

with ¢=76/2(2— ), and of a cut contribution behaving at
large times as a power law,

. (577)
} kt SN

The behaviors ob (t) andDC(t) at several different tem-
peratures are illustrated in Fig. 1 fér=0.5 and in Fig. 2 for
6=1.5. Interestingly enough, for any gives the curves
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FIG. 2. The solid lines show the quantum diffusion coefficient
D(t) plotted as a function oft for §=1.5 and for bath tempera-
turesT=0, kgT=%y/27, kgT=rhy/7. The dashed lines show the
correspondindd ®(t).

DY(t), is a monotonously increasing functionbfFor times
t<ty, (tw="/27kgT) and for any value ob, the curves for
D(t) at finite T nearly coincide with those af=0, as it
should.

At intermediate times, and for<05<1, an oscillation
due to the pole contribution takes placeDift) [and also in
DY(t) but with a smaller amplitude For certain values of
andT, this oscillation may even result in negative values of
D(t) during a finite time interval.

At large timest> vy~ 1,t,, and for any finiteT, the curves
of D(t) andD®(t) join together:D(t) describes a subdiffu-
sive regime when & 6 <1, and a superdiffusive one when
5>1. At T=0, D(t) describes the relaxation @fx?(t) to-
wards Ax?(«) for 0<8<1, and a subdiffusive regime for
1<6<2.

In the classical case, a modified FDT can be written as
[1.2]

(tat,;tO)

acxx
xxx(t,t’>=B®(t—t')><°'(t,t';to)ﬁ—, (14)

!

wherey,,(t,t") is the displacement response function. For a

diffusing  particle, the fluctuation-dissipation ratio
X°(t,t";to) can be obtained frord°(7) andD®(t,) [3]:
| D°(7)
XN rty)=——m—F. (15
D°(7)+D%%t,)

For anyr andt,,, one can define an effective inverse tem-
perature ag8%(7,t,)=BX%(r,t,). SinceX® does not de-
pend onT, the bath temperature is rescaled by a factd'1/

corresponding to different bath temperatures do not interseckarger than 1, due to those fluctuations of the particle dis-

Actually, it can be shown that, at any fixed tiheD (t), like

placement, which take place during the waiting time. At
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1 ' ' ' ' =1, one retrieves the resul¢"2%=1/2 andT%%=2T [2,3].
For any other value o, X®29and TS are algebraic func-
tions oft,, /7. The limits r —« andt,,— do not commute.
In the quantum case, the effective temperatdrg;
=(KBer) ~* can be obtained from the following equatifBi:
Dt (7)=D(7)+D(ty). (17
Equation (17) also allows us to defindlo4 at T=0 for
1< 6<2. SinceD(t) is a monotonously increasing function
of T, Eq. (17) yields for T¢q(7,t,,) @ uniquely defined value.
The curves representing.«(7,t,) as a function ofr for
6=0.5 and$=1.5 at a given finite temperature and for a
givent,>y 1ty are plotted in Fig. 3. Quantum effects do
not persist beyond timesr~ty. Thus, for times 7
>y L ty, X¥Y(1t,) [Eq. (16)] allows for a proper de-
scription of finite temperature aging.
In summary, we have shown that the two-time dynamics
ye of a quantum dissipative free particle displays extremely rich
behaviors. In particular, one finds either a localized regime in
FIG. 3. The solid lines show the effective inverse temperaturayhich the position can be defined in an absolute way and
Best,» @as computed from Ed17), plotted as a function of7 fora  {oes not age (=0, 0<5<1), or (possibly anomalous)y
bath temperaturégT=7y/2m and two different values ob. The  giffusing ones in which it only makes sense to consider the
dashed Ilnctleg show the corresponding classical effective inverse ter@ﬁsplacement, which displays aging €0, 1<5<2, or T
peraturegc;™, as deduced from EqL6). finite, 0<8<2). We have demonstrated th@dj the aging
i 1 . regime at a finite temperature is properly described by the
large times ¢,t,>y ,tth),clone can use in EqilS) the  (jassical fluctuation-dissipation ratio, which fort1 is a
asymptotic expressions @“(7) and D®(t,) as given by  geff.similar function ot/ 7, parametrized by, (ii) the limit
Eq. (13). Equation(15) then displays the fact that, in a sub- \5e of the fluctuation-dissipation ratio is conditioneddy

Ohmic or super-Ohmic model of exponefit(0<5<1 or  the |imit value 1/2 being specific of the Ohmic dissipation
1<6<2), a self-similar aging regime takes place at Iarge(5: 1).

times, as pictured by

B/ B

Let us add that this model, interestipgr se[2], is not
devoid of phenomenological interest. For instance, in the do-
1 . (16) main of single-charge tunneling, the phase in a junction
1+ (t, /7%t treated as a capacitor coupled to a dissipative environment
behaves as a sub-Ohmic dissipative free partiéle Our
Interestingly enoughX®-39and T5;2%= (kg 859 ~L are func-  study suggests that aging should be displayed by the phase,
tions oft,,/r, solely parametrized by. They do not depend while the conjugate variable, i.e., the charge on the capacitor,
on the other parameters of the modie¢., y or ;). For§  should not age.
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